Abstract
In this paper, we propose an enhanced deep clustering network (EDCN), which is composed of a Feature Extractor, a Conditional Generator, a Discriminator and a Siamese Network. Specifically, we will utilize two kinds of generated data based on adversarial training, as well as the original data, to train the Feature Extractor for learning effective latent representations. In addition, we adopt the Siamese network to find an embedding space, where a better affinity similarity matrix is obtained as the key to success of spectral clustering in providing reliable pseudo-labels. Particularly, the obtained pseudo-labels will be used to generate realistic data by the Generator. Finally, the discriminator is used to model the real joint distribution of data and corresponding latent representations for Feature Extractor enhancement. To evaluate our proposed EDCN, we conduct extensive experiments on multiple data sets including MNIST, USPS, FRGC, CIFAR-10, STL-10, and Fashion-MNIST by comparing our method with a number of state-of-the-art deep clustering methods, and experimental results demonstrate its effectiveness and superiority.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.