Abstract

In this paper we consider the problem of describing the action being performed by human figures in still images. We will attack this problem using an unsupervised learning approach, attempting to discover the set of action classes present in a large collection of training images. These action classes will then be used to label test images. Our approach uses the coarse shape of the human figures to match pairs of images. The distance between a pair of images is computed using a linear programming relaxation technique. This is a computationally expensive process, and we employ a fast pruning method to enable its use on a large collection of images. Spectral clustering is then performed using the resulting distances. We present clustering and image labeling results on a variety of datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.