Abstract
AbstractLight field (LF) reconstruction is a fundamental technique in light field imaging and has applications in both software and hardware aspects. This paper presents an unsupervised learning method for LF‐oriented view synthesis, which provides a simple solution for generating quality light fields from a sparse set of views. The method is built on disparity estimation and image warping. Specifically, we first use per‐view disparity as a geometry proxy to warp input views to novel views. Then we compensate the occlusion with a network by a forward‐backward warping process. Cycle‐consistency between different views are explored to enable unsupervised learning and accurate synthesis. The method overcomes the drawbacks of fully supervised learning methods that require large labeled training dataset and epipolar plane image based interpolation methods that do not make full use of geometry consistency in LFs. Experimental results demonstrate that the proposed method can generate high quality views for LF, which outperforms unsupervised approaches and is comparable to fully‐supervised approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.