Abstract
These days' discussion forums provide dependable solutions to the problems related to multiple domains and areas. However, due to the presence of huge amount of less-informative/inappropriate posts, the identification of the appropriate problem-solution pairs has become a challenging task. The emergence of a variety of topics, domains and areas has made the task of manual labelling of the problem solution-post pairs a very costly and time consuming task. To solve these issues, we concentrate on deep semantic and logical relation between terms. For this, we introduce a novel semantic correlation graph to represent the text. The proposed representation helps us in the identification of topical and semantic relation between terms at a fine grain level. Next, we apply the improved version of personalised pagerank using random walk with restarts. The main aim is to improve the rank score of terms having direct or indirect relation with terms in the given question. Finally, we introduce the use of the node overlapping version of GAAC to find the actual span of answer text. Our experimental results show that the devised system performs better than the existing unsupervised systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information and Decision Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.