Abstract

Visualisation of cardiac fibrillation plays a very considerable role in cardiophysiological study and clinical applications. One of the ways to obtain the image of these phenomena is the registration of mechanical displacement fields reflecting the track from electrical activity. In this work, we read these fields using cross-correlation analysis from the video of open pig's epicardium at the start of fibrillation recorded with electrocardiogram. However, the quality of obtained displacement fields remains low due to the weak pixels heterogeneity of the frames. It disables to see more clearly such interesting phenomena as mechanical vortexes that underline the mechanical dysfunction of fibrillation. The applying of chemical or mechanical markers to solve this problem can affect the course of natural processes and falsify the results. Therefore, we developed a novel scheme of an unsupervised deep neural network that is based on the state-of-art positional coding technology for a multilayer perceptron. This network enables to generate a couple of frames with a more heterogeneous pixel texture, that is more suitable for cross-correlation analysis methods, from two consecutive frames. The novel network scheme was tested on synthetic pairs of images with different texture heterogeneity and frequency of displacement fields and also it was compared with different filters on our cardiac tissue image dataset. The testing showed that the displacement fields obtained with our method are closer to the ground truth than those which were computed only with the cross-correlation analysis in low contrast images case where filtering is impossible. Moreover, our model showed the best results comparing with the one of the popular filter CLAHE on our dataset. As a result, using our approach, it was possible to register more clearly a mechanical vortex on the epicardium at the start of fibrillation continuously for several milliseconds for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.