Abstract
Clustering is a fundamental challenge in many data-driven application fields and machine learning techniques. The data distribution determines the quality of the outcomes, which has a significant impact on clustering performance. As a result, deep neural networks can be used to learn more accurate data representations for clustering. Many recent studies have focused on employing deep neural networks to develop a clustering-friendly representation, which has resulted in a significant improvement in clustering performance. We present a systematic survey of clustering with deep learning in this study. Then, a taxonomy of deep clustering is proposed, as well as some sample algorithms for our overview. Finally, we discuss some exciting future possibilities for clustering using deep learning and offer some remarks.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.