Abstract

Recent work has shown that optical flow estimation can be formulated as a supervised learning problem. Moreover, convolutional networks have been successfully applied to this task. However, supervised flow learning is obfuscated by the shortage of labeled training data. As a consequence, existing methods have to turn to large synthetic datasets for easily computer generated ground truth. In this work, we explore if a deep network for flow estimation can be trained without supervision. Using image warping by the estimated flow, we devise a simple yet effective unsupervised method for learning optical flow, by directly minimizing photometric consistency. We demonstrate that a flow network can be trained from end-to-end using our unsupervised scheme. In some cases, our results come tantalizingly close to the performance of methods trained with full supervision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.