Abstract
Knowing the robot's pose is a crucial prerequisite for mobile robot tasks such as collision avoidance or autonomous navigation. Using powerful predictive models to estimate transformations for visual odometry via downward facing cameras is an understudied area of research. This work proposes a novel approach based on deep learning for estimating ego motion with a downward looking camera. The network can be trained completely unsupervised and is not restricted to a specific motion model. We propose two neural network architectures based on the Early Fusion and Slow Fusion design principle: “EarlyBird” and “SlowBird”. Both networks share a Spatial Transformer layer for image warping and are trained with a modified structural similarity index (SSIM) loss function. Experiments carried out in simulation and for a real world differential drive robot show similar and partially better results of our proposed deep learning based approaches compared to a state-of-the-art method based on fast Fourier transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.