Abstract

A remarkable breakthrough in topological phase classification is the establishment of the topological periodic table, which is mainly based on the classifying space analysis or K theory, but not based on concrete Hamiltonians that possess finite bands or arise in a lattice. As a result, it is still difficult to identify the topological phase of an arbitrary Hamiltonian; the common practice is, instead, to check the incomplete and still growing list of topological invariants one by one, very often by trial and error. Here, we develop unsupervised classifications of topological gapped systems with symmetries, and demonstrate the data-driven construction of the topological periodic table without apriori knowledge of topological invariants. This unsupervised data-driven strategy can take into account spatial symmetries, and further classify phases that were previously classified as trivial in the past. Our Letter introduces machine learning into topological phase classification and paves the way for intelligent explorations of new phases of topological matter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call