Abstract
In this paper, we propose a method for the partitioning of dance sequences into multiple periods and motion patterns. The proposed method deploys features in the form of a skeletal representation of the dancer observed through time using multiple depth sensors. This representation is the fusion of skeletal features captured using multiple sensors and combined into a single, more robust, skeletal representation. Using this information, initially we partition the dance sequence into periods and subsequently into motion patterns. Partitioning into periods is based on observing the horizontal displacement of the dancer while each period is subsequently partitioned into motion patterns by using an exemplar-based Hidden Markov Model that classifies each frame into an exemplar representing a hidden state of the HMM. The proposed method was tested on dance sequences comprising multiple periods and motion patterns providing promising results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Heritage in the Digital Era
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.