Abstract

Identifying gene regulatory networks (GRNs) at the resolution of single cells has long been a great challenge, and the advent of single-cell multi-omics data provides unprecedented opportunities to construct GRNs. Here, we propose a novel strategy to integrate omics datasets of single-cell ribonucleic acid sequencing and single-cell Assay for Transposase-Accessible Chromatin using sequencing, and using an unsupervised learning neural network to divide the samples with high copy number variation scores, which are used to infer the GRN in each gene block. Accuracy validation of proposed strategy shows that approximately 80% of transcription factors are directly associated with cancer, colorectal cancer, malignancy and disease by TRRUST; and most transcription factors are prone to produce multiple transcript variants and lead to tumorigenesis by RegNetwork database, respectively. The source code access are available at: https://github.com/Cuily-v/Colorectal_cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.