Abstract

In this paper, we propose a novel unsupervised constellation model learning algorithm based on voting weight control for accurate scale, rotation, and translation invariant face localization without manual selection of feature points. The constellation model is learned by controlling the expected voting weights of the local features to obtain their perceptual boundaries and the distribution of voting weights, and selecting most common features as the representative features among them. The proposed constellation model can be learned incrementally to successfully localize faces when the previously learned model fails to localize them accurately. Through experiments, it is shown that the proposed constellation model can accurately localize faces of various size, orientation, and location.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.