Abstract
Understanding the biological variability of anatomical objects is essential for statistical shape analysis and to distinguish between healthy and pathological structures. Statistical Shape Modelling (SSM) can be used to analyse the shapes of sub-structures aiming to describe their variation across individual objects and between groups of them [1]. However, when the shapes exhibit self-similarity or are intrinsically fractal, such as often encountered in biomedical problems, global shape models result in highly non-linear shape spaces and it can be difficult to determine a compact set of modes of variation. In this work, we present a method for local shape modelling and analysis that uses Diffusion Maps [2] for non-linear, spectral clustering to build a set of linear shape spaces for such analysis. The method uses a curvature scale-space (CSS) description of shape to partition them into sets of self-similar parts and these are then linearly mixed to more compactly model the global shape.KeywordsShapeStatistical Shape ModellingLocal Shape ModelsCurvature Scale SpaceDiffusion Mapsbrain contours
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.