Abstract

The potential of excitation-emission fluorescence spectroscopy combined with three-way analysis was investigated for discriminating the photosystem II (PSII) (with the water-oxidizing complex) and without the water-oxidizing complex (wPSII) using unsupervised classification methods. The water-oxidizing complex within PSII carry out the reaction of water splitting which is as a vital process on the earth. Therefore, discriminating the presence of the water-oxidizing complex in protein samples is crucial. Low cost and accurate spectroscopic determination of the amount of clusters inside PSII or any other protein containing species are important when investigating the inclusion and exclusion of such clusters into and from species. Fluorescence data of samples were similar, and we showed the potential usefulness of multivariate methods, such as parallel factor analysis (PARAFAC) and principal component analysis (PCA) for recognition of the two types of samples. Both techniques were applied to the excitation-emission fluorescence matrices (EEM) of solutions at two of different pH values (2.0 and 12.0). Three fluorescent components were found for all samples that are related to tyrosine (Tyr), tryptophan (Trp) and phenylalanine (Phe) amino acids. These three amino acids are representative of all datasets and indicate their similarities and differences. We then found the effectual wavelengths for separation of samples in a specific acidity, including the excitation wavelengths of 220 and 230 nm and the emission wavelengths of 300 and 305 nm. The acidity of the solutions has various influences on the conformation of proteins. In PSII and PSII the without water-oxidizing complex samples conformational changes can change their spectra which was applied for discrimination purpose. This separation was better in pH = 12.0. We also showed the effect of time on small conformational changes within datasets were higher in pH = 2.0. In the end, for indicating the high distribution of spectral data from proteins which is the result of conformational changes, we compared the distribution of measured spectral data with that from a simple organic molecule, fluorescein. Altogether, we could distinguish between the two groups of protein samples properly at pH = 12.0 using low-cost EEM spectral images and PARAFAC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.