Abstract
There are many approaches to fuse panchromatic (PAN) and multispectral (MS) images for classification, mainly including sharpening-then-classification methods, classification-then-sharpening methods, and segmentation-then-classification methods. The generalized Chinese restaurant franchise (gCRF) is a segmentation-then-classification-like method to fuse very high resolution (VHR) PAN and MS images for classification, which has the limitation the same as that of the general segmentation-then-classification methods that segmentation errors will affect the subsequent classification. The problems of gCRF are that during the segmentation step, the spatial coherence in the image plane is deficient and the global clusters without spatial position information are used for segmentation, which may lead to undersegmented and disconnected regions in the segmentation results and decrease classification accuracy. In this paper, we propose an improved model, which overcomes the problems of the gCRF during the segmentation step, to increase the classification accuracy by the following two ways: 1) building the spatial coherence in the image plane by introducing neighborhood information of superpixels to construct the subimages and 2) using localized clusters with spatial location information instead of global clusters to measure the similarity between superpixels and segments. The experimental results show that the problems of undersegmentation and disconnected segments are both alleviated, resulting in better classification results in terms of the visual and quantitative aspects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.