Abstract

For improving the accuracy of unsupervised classification based on scattering models, the four-component Yamaguchi model is introduced, which is an improved version of the best-known three-component Freeman model. Therewith, the four-component model is combined with the Wishart distance model. The new proposed algorithm of clustering is rolled out thereafter and the procedure of this new method is listed. In experiments, seven areas of various homogeneities are singled out from the Flevoland sample image in AIRSAR dataset. Qualitative and quantitative experiments are performed for a comparative study. It can be easily seen that the resolution and details are remarkably upgraded by the new proposed method. The accuracy of classification in homogeneous areas has also increased significantly by adopting the new iterative algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.