Abstract

Employs a multi-stage algorithm that makes use of spatial contextual information in a hierarchical clustering procedure for unsupervised image segmentation. The hierarchical clustering algorithm is based on similarity measures between all pairs of candidates being considered for merging. The multi-stage algorithm involves a local segmentor and a global segmentor. The data from individual sensors are integrated into a set of multidimensional data and it is then applied to the hierarchical clustering algorithm based on linear statistics under the assumption of an additive noise model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.