Abstract

Cell instance segmentation is a key technology for cervical cancer auxiliary diagnosis systems. However, pixel-level annotation is time-consuming and labor-intensive, making it difficult to obtain a large amount of annotated data. This results in the model not being fully trained. In response to these problems, this paper proposes an unsupervised cervical cell instance segmentation method that integrates cell characteristics. Cervical cells have a clear corresponding structure between the nucleus and cytoplasm. This method fully takes this feature into account by building a dual-flow framework to locate the nucleus and cytoplasm and generate high-quality pseudo-labels. In the nucleus segmentation stage, the position and range of the nucleus are determined using the standard cell-restricted nucleus segmentation method. In the cytoplasm segmentation stage, a multi-angle collaborative segmentation method is used to achieve the positioning of the cytoplasm. First, taking advantage of the self-similarity characteristics of pixel blocks in cells, a cytoplasmic segmentation method based on self-similarity map iteration is proposed. The pixel blocks are mapped from the perspective of local details, and the iterative segmentation is repeated. Secondly, using low-level features such as cell color and shape, a self-supervised heatmap-aware cytoplasm segmentation method is proposed to obtain the activation map of the cytoplasm from the perspective of global attention. The two methods are fused to determine cytoplasmic regions, and combined with nuclear locations, high-quality pseudo-labels are generated. These pseudo-labels are used to train the model cyclically, and the loss strategy is used to encourage the model to discover new object masks, thereby obtaining a segmentation model with better performance. Experimental results show that this method achieves good results in cytoplasm segmentation. On the three datasets of ISBI, MS_CellSeg, and Cx22, 54.32%, 44.64%, and 66.52% AJI were obtained, respectively, which is better than other typical unsupervised methods selected in this article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.