Abstract
An unsupervised binary hashing (UBH) method is proposed. To preserve the local and Euclidean metric structures in the reduced feature space, it performs the dimensionality reduction (DR) by using the orthogonal locality-preserving projection. In addition, it minimises the error between the generated binary hash codes and low-dimensional feature vectors that are obtained in DR. To minimise the quantisation error, the binary hash codes are generated using the optimal rotation and offset. Experimental results show that the proposed UBH method has better performance than other existing methods in terms of the mean average precision and recall–precision curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.