Abstract
The modelling of end-to-end Machine Learning processes and methods is not only computationally intensive, but also requires expertise in Data Science and often domain knowledge of the problem. To overcome this adversity, a relatively new field of research has emerged called Automated Machine Learning (AutoML). The main focus of the domain is to discover an automated way to build Machine Learning pipelines given a Machine Learning task and an input data set. While all AutoML systems currently focus on the task of supervised learning, unsupervised learning remains an unexplored and unsolved problem. This thesis aims to provide solutions for automating Machine Learning specifically for the case of unsupervised learning (clustering), in a domain-agnostic manner. This is achieved through a combination of state-of-the-art processes based on Meta Learning for Algorithm Selection and Bayesian Optimization for hyperparameter tuning. Experimentation results on real life datasets provide enough evidence that clustering is a process that can be fully automated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.