Abstract
With the massive use of electronic gadgets and the developing fame of web-based media, a great deal of text information is being produced at the rate never observed. It is not feasible for people to pursue all information produced and discover what is being investigated in their area of interest. To determine topics in large textual documents Topic modeling is used. Topic Modeling Algorithms are Unsupervised Machine Learning approaches which are widely used and have proven to be successful in the area of Aspect-based Opinion Mining to extract ‘latent’ topics, which are aspects of interest. In this paper, the approaches that are widely used for topic modeling are examined and compared to find their importance in detecting topics based on metrics such as Perplexity and Coherence. As a result, Latent Dirichlet Allocation is a good topic modeling algorithm compared to Latent Semantic Analysis and Hierarchical Dirichlet Process for aspect extraction process in aspect-based opinion mining. Also, we have proposed an unsupervised aspect extraction algorithm based on topic models for Aspect-based Opinion mining.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.