Abstract
We consider the problem of classifying completely or partially unlabeled data by using inequalities that contain absolute values of the data. This allows each data point to belong to either one of two classes by entering the inequality with a plus or minus value. By using such absolute value inequalities in linear and nonlinear support vector machines, unlabeled or partially labeled data can be successfully partitioned into two classes that capture most of the correct labels dropped from the unlabeled data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.