Abstract

Fourier Ptychographic Microscopy (FPM) is a computational technique that achieves a large space-bandwidth product imaging. It addresses the challenge of balancing a large field of view and high resolution by fusing information from multiple images taken with varying illumination angles. Nevertheless, conventional FPM framework always suffers from long acquisition time and a heavy computational burden. In this paper, we propose a novel physical neural network that generates an adaptive illumination mode by incorporating temporally-encoded illumination modes as a distinct layer, aiming to improve the acquisition and calculation efficiency. Both simulations and experiments have been conducted to validate the feasibility and effectiveness of the proposed method. It is worth mentioning that, unlike previous works that obtain the intensity of a multiplexed illumination by post-combination of each sequentially illuminated and obtained low-resolution images, our experimental data is captured directly by turning on multiple LEDs with a coded illumination pattern. Our method has exhibited state-of-the-art performance in terms of both detail fidelity and imaging velocity when assessed through a multitude of evaluative aspects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.