Abstract

PurposeMany mobile devices today are equipped with diversified sensors that enable the acquisition of rich user context (e.g. GPS location, phone activity) for application utilization. With the growing usage of mobile devices in daily life, the problem of conveniently and promptly searching a piece of content that a user has viewed on his/her device before becomes more and more crucial. This paper aims to propose a context‐based query processing framework called UCQP that supports unstructured queries for content search in a user's access history.Design/methodology/approachBeyond the keywords related to the content properties, a context query in the framework is specified with freeform phrases that describe high‐level mobile contexts of the user at a previous time when the user viewed the searched content.FindingsExperimental results on a prototype system of the framework illustrate its good accuracy and small response time.Originality/valueTo tolerate the incompleteness and inaccuracy in user query texts caused by fading human memory, the authors develop several semantic query parsers that are tailored for different types of contexts using natural language processing and information retrieval techniques. The authors further propose a similarity model to rank the multiple result contents of a query by comparing context entities specified in the query and historical context values associated with each result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.