Abstract

This paper presents a generic approach to generation of surface and volume unstructured meshes for complex free-form objects, obtained by laser scanning. A four-stage automated procedure is proposed for discrete data sets: surface mesh extraction from Delaunay tetrahedrization of scanned points, surface mesh simplification, definition of triangular interpolating subdivision faces, Delaunay volumetric meshing of obtained geometry. The mesh simplification approach is based on the medial Hausdorff distance envelope between scanned and simplified geometric surface meshes. The simplified mesh is directly used as an unstructured control mesh for subdivision surface representation that precisely captures arbitrary shapes of faces, composing the boundary of scanned objects. CAD model in Boundary Representation retains sharp and smooth features of the geometry for further meshing. Volumetric meshes with the MezGen code are used in the combined Finite-Discrete element methods for simulation of complex phenomena within the integrated Virtual Geoscience Workbench environment (VGW).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call