Abstract

Unstructured adaptive triangular mesh generation techniques and vertex based finite volume schemes that suit slider air bearing simulation of hard disk drives are constructed and implemented. Different refinement and adaptation techniques are used to generate several levels of good quality mesh over sliders with complex rail shapes. At each level, either one geometrical or one physical property of the problem is captured. A group of implicit vertex based finite volume schemes is first constructed. The resulting simultaneous linear algebraic equations are solved iteratively by the Gauss-Seidel method. Unconditional stability of the scheme is achieved. In addition, we present a non-nested full approximation storage (FAS) multi-grid algorithm that can significantly speed up the convergence rate of the implicit finite volume schemes. The steady state flying attitude is obtained by a quasi-Newton iteration method. [S0742-4787(00)01804-X]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call