Abstract

The unsteady nature of the propeller slipstream interacting with a wing has been studied by flow visualization and unsteady wing surface pressure measurements. Flow visualization was performed by marking the propeller tip vortex with smoke. Unsteady wing surface pressures were measured by traversing a wing instrumented with a chordwise array of 16 microphones in a spanwise direction through the propeller wake. This work yielded information on the motion of the propeller wake as it passes over the wing. As the propeller wake passed over the wing: the propeller tip vortex experienced an inviscid interaction at the leading edge; viscous action at the leading edge severed the propeller tip vortex; the propeller tip vortex experienced significant spanwise and chordwise displacements and then deformed in order to reconnect at the trailing edge; axial velocity in the vortex core caused the helical vortex to thicken or stretch near the wing surface; and, the magnitude of the pressure fluctuations decreased in magnitude with distance traveled along the chord.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call