Abstract

This paper investigates the combined effect of Prandtl number and Richardson number on the wake dynamics and heat transfer past a circular cylinder in crossflow using a SUPG based finite element method. The computations are carried out for 80 < Re < 180, 0.7 < Pr < 100 and 0 ⩽ Ri ⩽ 2 . The results have been presented for both forced and mixed convection flows. In the case of forced convection, crowding of temperature contours with reduced spatial spread is observed for increasing Prandtl numbers. The local and average Nusselt numbers are found to increase with increasing Reynolds number and Prandtl number. The average Nusselt number and Colburn factor are found to vary as Re 0.548 Pr 0.373 and Re −0.452, respectively. The extrapolated results of the average Nusselt number for low and high Reynolds numbers are found to match quite well with the available results in literature. Effect of Prandtl number shows various interesting phenomena for the mixed convective flows. Increasing the Prandtl numbers resulted in decreasing deflection and strength in the wake structures. The effect of baroclinic vorticity production during vortex shedding has been demonstrated at the vicinity of the cylinder and near wake. The Strouhal number is found to decrease with increasing Prandtl number, in the case of buoyancy induced flow. The effect of increasing Prandtl number is manifested as the stabilizing effect in the flow. This is, perhaps, the first time that such behavior for the Prandtl number is being reported. Additionally it is observed that the average Nusselt number decreases with increasing Richardson number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call