Abstract

Abstract Unsteady pressure distributions of a two-dimensional super-critical wing while it was fluttering were measured in the transonic flow regime. The results were compared with those by the Navier-Stokes code which includes wind-tunnel wall effects. Although there were discrepancies between the experimental results and the analytical model for the pressure phase delay distribution, no disagreements were observed for the pitching first harmonics provided that there was no large flow separation. In the tests, the flutter was forced to be suppressed soon after its onset before it reached a limit cycle oscillation (LCO) where the amplitude of the pitching angle was supposed to be over 2 degrees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.