Abstract

AbstractThe velocity potential is derived for a transient source of arbitrary strength undergoing arbitrary three-dimensional motion. The initially quiescent fluid of infinite depth is assumed to be inviscid, incompressible and homogeneous. The upper surface of the fluid is covered by a thin layer of elastic material of uniform density with lateral stress. The linearized initial boundary-value problem is formulated within the framework of the potential-flow theory, and the Laplace transform technique is employed to obtain the solution. The potential of a time-harmonic source with forward speed is obtained as a particular case. The far-field wave motion at long time is determined via the method of stationary phase. The problems of radiation (surge, sway and heave) of the flexural–gravity waves by a submerged sphere advancing at constant forward speed are investigated. The method of multipole expansions is used. Numerical results are obtained for the wave-making resistance and lift, added-mass and damping coefficients. The effects of an ice sheet and broken ice on the hydrodynamic loads are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.