Abstract
In this study, we have analyzed magnetohydrodynamic (MHD) consequences on the heat and mass transmission within unsteady dissipated liquid film flow. Flow is generated due to stretchable surface accompanied with effects of ohmic heating, chemical reaction and heat absorption. Moreover, the flow governing partial differential equations (PDEs) are further modified into equivalent ordinary differential equations (ODEs) by applying regular perturbation method to get its analytical solution after that we have applied sixth-order Runge–Kutta technique to get its numerical solution. These two solutions are validating each other in the simulations. Figures are plotted to study the changes in physical quantities like skin friction coefficient, concentration, velocity, temperature, Sherwood and Nusselt number with the variations of Prandtl numbers Pr, parameters of chemical reaction [Formula: see text], Eckert numbers Ec, magnetic parameter Ha (also known as Hartman number) Schmidt number and coefficient of heat absorption [Formula: see text].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.