Abstract

In order to clearly show the influence on the rotating stall of the impeller of a double-suction centrifugal pump, this paper, using the numerical simulation method of Shear Stress Transform (SST), analyzes the effects of different inlet angles of the blade on hydraulic performance, internal flow field and pressure pulsation in the impeller. The results show that the small angle of attack of the blade inlet scheme can effectively suppress the impeller rotation stall and that the design point head and efficiency are increased by 6.4% and 5.7% respectively. This paper, using turbulence intensity to determine the generation of rotating stall, proposed that the average of turbulence intensity exceeding 2% is a necessary condition for the generation of rotating stall and discovered that the standard deviation of the big angle of attack of the scheme is always greater than that of the small angle being analyzed by the impeller pressure pulsation. The basic critical frequencies of blade inlet pressure pulsation with components of a low frequency is dominated by the impeller rotating frequency F0 and its harmonic frequencies 2F0, and 3F0, but the basic critical frequencies of blade outlet pressure pulsation is governed by Blade Passing Frequency (BPF). The research results can provide some theoretical support for stall research and hydraulic performance optimization of a double-suction pump.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.