Abstract
<abstract> <p>Traditional numerical methods, such as computational fluid dynamics (CFD), demand large computational resources and memory for modeling fluid dynamic systems. Hence, deep learning (DL) and, specifically Convolutional Neural Networks (CNN) autoencoders have resulted in accurate tools to obtain approximations of the streamwise and vertical velocities and pressure fields, when stationary flows are considered. The novelty of this paper consists of predicting the future instants from an initial one with a CNN autoencoder architecture when an unsteady flow is considered. Two neural models are proposed: The former predicts the future instants on the basis of an initial sample and the latter approximates the initial sample. The inputs of the CNNs take the signed distance function (SDF) and the flow region channel (FRC), and, for the representation of the temporal evolution, the previous CFD sample is added. To increment the amount of training data of the second neural model, a data augmentation technique based on the similarity principle for fluid dynamics is implemented. As a result, low absolute error rates are obtained in the prediction of the first samples near the shapes surfaces. Even in the most advanced time instants, the prediction of the vortices zone is quite reliable. 62.12 and 9000 speed-up ratios are achieved by the predictions of the first and second neural models, respectively, compared to the computational cost regarded by the CFD simulations.</p> </abstract>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.