Abstract

Unsteady-state Benard–Marangoni convection in large-scale liquid flows with a linear temperature distribution at the layer boundaries has been investigated by the boundary element method. Two variants of boundary conditions are considered. In the case of temperature gradient components distributed at both boundaries, the boundary problem cannot be reduced to a one-dimensional one. The structure of layered convective flows has been studied. It has been demonstrated that the initial and boundary value problems considered here describe convective liquid counterflows and the formation of extremum (local and global) values of temperature fields. The existence of stagnant points (in which the liquid velocity is zero) inside the layer of the moving nonisothermal liquid has been discovered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.