Abstract
This article addresses unsteady stagnation point flow of Oldroyd-B nanofluid past an impermeable stretching sheet. Characteristics of heat transfer are described within the frame of heat generation/absorption and nonlinear radiative process. Intention in present analysis is to develop a model for nanomaterial containing Brownian motion and thermophoresis phenomena. The resulting nonlinear differential systems have been solved for the convergent homotopic solutions. Behavior of sundry variable for the velocity, temperature and concentration are addressed. Numerical values examined the local Nusselt number. It is revealed that velocity field enhances for dimensionless retardation time while reverse situation is observed regarding dimensionless relaxation time. Temperature and heat transfer rate are enhanced via larger nonlinear thermal radiation and temperature parameters. Moreover, behavior of Brownian motion and thermophoresis on the concentration field is quite reverse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of the Brazilian Society of Mechanical Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.