Abstract
Considering the mass and energy sources carried by the accumulated ice layer, an unsteady heat and mass transfer model of the runback water film on the deicing surface is established to simulate aircraft electro-thermal deicing process. With the extension of the freezing coefficient to the transient calculation, the coupled heat transfer of the runback water and the solid skin is solved at each time step by a temperature-based method. Unsteady numerical simulation is carried out for the electro-thermal deicing system of a NACA 0012 airfoil. The temperature variations with time are in acceptable agreement with the literature data, and the unsteady temperature-based deicing model is verified. The calculation results of temperature, runback water flux and ice thickness on the deicing surface are analyzed at different time points, and it is shown that the unsteady electro-thermal deicing model can capture the main features of the icing, ice melting and re-freezing processes in the transient deicing simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.