Abstract

This paper explores energy and mass transport behavior of unstable separated stagnation point flow of nanofluid over a moving flat surface along with Buongiorno’s model. Characteristic of Brownian diffusion and thermophoresis are considered. Additionally, characteristics of chemical reaction is taken into account. A parametric investigation is performed to investigate the outcome of abundant parameters such as temperature, velocity and concentration. An appropriate equation is converting into a set of ODEs through employing appropriate transformation. The governing equations has been solved numerically by using the classical fourth-order Runge-Kutta integration technique combined with the conventional shooting procedure after adapting it into an initial value problem. Our findings depict that the temperature field θ(ζ) improves for augmenting values of theromophoresis parameter (Nt) with dual solutions of attached flow without inflection and flow with inflection. Also, the difference of Brownian motion parameter (Nb) with two different solutions of attached flow exists with energy profile. It can be found that an energy profile θ(ζ) elevates due to augmenting values of (Nb). It has been perceived that thermal boundary layer thickness elevates due to large amount of Brownian motion parameter (Nb).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.