Abstract

Numerical simulation of two-dimensional transient seepage is developed using radial basis function-based differential quadrature method (RBF-DQ). To the best of the authors’ knowledge, this is the first application of this method to seepage analysis. For the general case of irregular geometry and unstructured node distribution, the local form of RBF-DQ was used. The multiquadric type of radial basis functions was selected for the computations, and the results were compared with analytical, finite element method, and existing numerical solutions from the literature. Results of this study show that localized RBF-DQ can produce accurate results for the analysis of seepage. The method is meshfree and easy to program, but as with previous applications of RBFs, requires careful selection of suitable shape parameters. A practical method for estimating suitable shape parameters is discussed. For time integration, Crank–Nicolson, Galerkin and finite difference methods were applied, leading to stable results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.