Abstract

We study the unsteady viscous flow of an incompressible, isothermal (Newtonian) fluid whose motion is induced by the sudden swirling of a cylindrical wall and is also starting with an axial velocity component. Basic physical assumptions are that the pressure axial gradient keeps its hydrostatic value and the radial velocity is zero. In such a way the Navier-Stokes PDEs become uncoupled and can be solved separately. Accordingly, we provide analytic solutions to the unsteady speed components, i.e., the axial $v_z(r,t)$ and the circumferential $v_\theta(r,t)$, by means of expansions of Fourier-Bessel type under time damping. We also find: the surfaces of dynamical equilibrium, the wall shear stress during time and the Stokes streamlines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call