Abstract

The article is concerned with the effect of linear and cubic non-linear damping of an elastic bearing on forced resonant vibrations of a gyroscopic vertical rigid rotor taking into account non-linear stiffness of the cubic nature of the bearing material. It is confirmed that non-linear cubic damping of the support can suppress not only the maximum amplitude, but also the amplitudes of forced unsteady oscillations behind the rotation speed corresponding to the maximum amplitude and the variation of its values in time along the main curve, around its mean values. It shifts the speed of rotation of the amplitude maximum, with rigid and soft non-linear elastic characteristics of the support material downwards and upwards, respectively. It is shown that with a “slow” increase in the shaft rotation speed, an increase in the absolute value of the angular acceleration is accompanied by a shift of the amplitude peak towards high speeds, with a “slow” decrease in the shaft rotation speed – towards low speeds with a decrease in the amplitude of oscillations. It is shown that during the rotor takeoff run, the maximum amplitude for the case with a rigid non-linear elasticity characteristic of the support material is greater than the same value for the case with a soft non-linear elasticity characteristic of the support material, and conversely, during the rotor run-down for similar cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call