Abstract

This paper analytically investigates the unsteady peristaltic transport of the Maxwell fluid in a finite tube. The walls of the tube are subjected to the contraction waves that do not cross the stationary boundaries. The analysis is carried out by a long wavelength approximation in the non-dimensional form. The expressions for the axial and radial velocities are derived. The pressures across the wavelength and the tubelength are also estimated. The reflux phenomenon is discussed, which culminates into the determination of the reflux limit. Mathematical formulations are physically interpreted for the flow of masticated food materials such as bread and white eggs in the oesophagus. It is revealed that the Maxwell fluids are favorable to flow in the oesophagus as compared with the Newtonian fluids. This endorses the experimental finding of Takahashi et al. (Takahashi, T., Ogoshi, H., Miyamoto, K., and Yao, M. L. Viscoelastic properties of commercial plain yoghurts and trial foods for swallowing disorders. Rheology, 27, 169–172 (1999)). It is further revealed that the relaxation time does not affect the shear stress and the reflux limit. It is found that the pressure peaks are identical in the integral case while different in the non-integral case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.