Abstract
Unsteady oblique stagnation-point flow and heat transfer of fractional Maxwell fluid with convective derivative towards an oscillating tensile plate are discussed in this paper. The fractional operator is introduced to material derivative for the first time to obtain a newly defined constitutive equation of Maxwell fluid. The Fourier's law is modified accordingly. The pressure gradient is innovatively obtained by solving the differential equation, which bases on the momentum equation away from the plate. Furthermore, the numerical solutions are acquired by virtue of the finite difference method combined with L1-algorithm. It turns out to be convergent through constructing numerical example. The influence of related parameters on the velocity and temperature are performed graphically in detail. Results show that the fluid velocity and temperature distributions tend to periodic oscillation near the plate. Both the velocity and the temperature reduce with the augment of fractional derivative parameters, which indicates the velocity and the temperature boundary layer become thinner. The smaller velocity relaxation time parameter leads to enhanced velocity, meaning that the pressure promotes the fluid velocity. It is evident that all the temperature curves have a tendency to increase first and then decrease with the diverse parameters due to the thermal relaxation characteristic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.