Abstract

Abstract : This report describes a computational study undertaken to consider the aerodynamic effect of synthetic jets as a means to provide the control authority needed to maneuver a projectile at low subsonic speeds. The time-accurate Navier-Stokes computational technique has been used to obtain numerical solutions for the unsteady jet interaction flow field for a projectile at a subsonic speed, Mach = 0.11, and several angles of attack from O deg to 4 deg. Qualitative flow field features show the interaction of the time dependent jet with the free stream flow. Numerical results show the effect of the jet on the flow field, surface pressures and aerodynamic coefficients. Unsteady numerical results have been obtained for a two-dimensional jet flow and compared with experimental data for validation. The same unsteady jet modeling technique has been applied to a subsonic projectile. These numerical results are being assessed to determine if synthetic jets can be used to provide the control authority needed for maneuvering munitions to hit the targets with precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.