Abstract

This paper presents an experimental and three-dimensional numerical study of unsteady, turbulent, void growth and cavitation simulation inside the passage of the axial flow pump. In this study a 3D Navier-Stokes code was used (CFDRC, 2008) to model the two-phase flow field around a four blades axial pump. The governing equations are discretized on a structured grid using an upwind difference scheme. The numerical simulation used the standard K-e turbulence model to account for the turbulence effect. The numerical simulation of void growth and cavitation in an axial pump was studied under unsteady calculating. Pressure distribution and vapor volume fraction were completed versus time at different condition. The computational code has been validated by comparing the predicated numerical results with the experiment. The predicted of cavitation growth and distribution on the impeller blade also agreed with that visualized of high speed camera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.