Abstract

Stability analysis of free convection in a liquid-saturated sparsely-packed porous medium with local-thermal-non-equilibrium (LTNE) effect is presented. For the vertical boundaries free–free, adiabatic and rigid–rigid, adiabatic are considered while for horizontal boundaries it is the stress-free, isothermal and rigid–rigid, isothermal boundary combinations we consider. From the linear theory, it is apparent that there is advanced onset of convection in a shallow enclosure followed by that in square and tall enclosures. Asymptotic analysis of the thermal Rayleigh number for small and large values of the inter-phase heat transfer coefficient is reported. Results of Darcy–Benard convection (DBC) and Rayleigh–Benard convection can be obtained as limiting cases of the study. LTNE effect is prominent in the case of Brinkman–Benard convection compared to that in DBC. Using a multi-scale method and by performing a non-linear stability analysis the Ginzburg–Landau equation is derived from the five-mode Lorenz modal. Heat transport is estimated at the lower plate of the channel. The effect of the Brinkman number, the porous parameter and the inter-phase heat transfer coefficient is to favour delayed onset of convection and thereby enhanced heat transport while the porosity-modified ratio of thermal conductivities shows the opposite effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.