Abstract
The combined effects of thermal and mass convection of viscous incompressible and immiscible fluids through a vertical wavy wall and a smooth flat wall are analyzed. The dimensionless governing equations are perturbed into a mean part (the zeroth-order) and a perturbed part (the first-order). The first-order quantities are obtained by the perturbation series expansion for short wavelength, in which the terms of the exponential order arise. The analytical expressions for the zeroth-order, the first-order, and the total solutions are obtained. The numerical computations are presented graphically to show the salient features of the fluid flow and the heat transfer characteristics. Separate solutions are matched at the interface by using suitable matching conditions. The shear stress and the Nusselt number are also analyzed for variations of the governing parameters. It is observed that the Grashof number, the viscosity ratio, the width ratio, and the conductivity ratio promote the velocity parallel to the flow direction. A reversal effect is observed for the velocity perpendicular to the flow direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.