Abstract
The aim of this study is to analysis of finite difference scheme of unsteady MHD flow of Casson nano-fluid attribute of Brownian motion and thermophoresis through a moving cylinder. The governing model for the flow is metamorphosed into non-dimensional impetus, strength and mass-diffusion equations and evolved numerically by employing explicit finite difference fetch with the aid of a computer programming language Compact visual FORTRAN 6.6a. In order to optimize the strait parameters and exactness of the strait, the stability and convergence test have sustained. It is clear that with primary boundary postulates, U= V= T= C= 0, and small difference time Δt=0.0005, ΔX=0.202, and ΔR= 0.251, the strait has converged for Prandtl number, Pr ≥ 0.02 and Lewis number, Le ≥ 0.018. The acquired results of this study are discussed for several values of natural parameters viz. Prandtl number, Casson fluid parameter, Lewis number, magnetic parameter, Brownian motion and thermophoresis number on the impetus, strength, mass-diffusion, skin friction, Nusselt number by means of several time steps. Moreover, the graphical representations of the solution are shown by conducting tecplot 9.0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.