Abstract

The exhaust system in condensing steam turbines is used to recover leaving kinetic energy of the last stage turbine, while guiding the flow from turbine to condenser. The flows in the exhaust system and the turbine stage are fully coupled and inherently unsteady. The unsteady flow interactions between the turbine and the exhaust system have a strong impact on the blade loading or blade aerodynamic force. This paper describes the unsteady flow interactions between a single-stage axial turbine and an exhaust system. The experimental and numerical studies on the coupled flow field in the single-stage turbine and the exhaust hood model under different operational conditions have been carried out. Unsteady pressure at the turbine rotor blade, turbine outlet, and exhaust outcasing are measured and compared with the numerical prediction. The details of unsteady flow in the exhaust system with the whole annulus stator and rotor blade rows are simulated by employing the computational fluid dynamics software CFX-5. Results show that for the investigated turbine-exhaust configuration the influence of the flow field in the exhaust system on the unsteady blade force is much stronger than that of the stator and rotor interaction. The flow pattern in the exhaust system changes with the turbine operational condition, which influences the unsteady flow in the turbine stage further.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call