Abstract
A large number of papers have been devoted to the study of unsteady flow past airfoil cascades. The majority of authors solve the problem for slightly curved profiles oscillating at low angles of attack. Among other work, we note that of Sohngen [1] on the flow past a dense cascade of plates oscillating synchronously and in phase in a potential fluid flow at a high angle of attack. Samoilovich [2] studied the flow past a cascade of plates of arbitrary shape oscillating with an arbitrary phase shift between neighboring plates. He presents the solution for the case of variable circulation in the quasisteady formulation. Stepanov [3] studied the same question with a linear approach to the flow behind the cascade. Musatov [4] examined the problem of the flow past a cascade of plates oscillating with an arbitrary phase shift between neighboring plates in a fluid flow, again at a high angle of attack, and considered the variation of the relative position of the plates durilng the oscillation process. The present paper considers the flow of a perfect incompressible fluid past a cascade of thin curved oscillating plates with account for the relative displacements of the plates during oscillation. To determine the intensity of the bound vortices per unit length, a linear integral equation is obtained. This represents a generalization of the Birnbaum equation to the case considered (see [5]). Equations are presented for calculating the unsteady aerodynamic forces and moments acting on the plates. As an example, the aerodynamic forces and moments are calculated for the quasistationary formulation of the problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.