Abstract

The goal of this research is to examine how a magnetic field affects the unsteady flow of a hybrid nanofluid over a spinning disk that is inclined and stretched while the flow is surrounded by a non-Darcy porous medium. Furthermore, for heat transmission mechanisms, Joule heating and viscous dissipation are considered. The current article is made more realistic by imposing thermal radiation to enhance the heat transmission system under the effects of convection. Moreover, thermal and velocity slip conditions have also been incorporated into the current study. The equations that administer the flow problem along with constraints at the boundaries are converted to dimension-free form by employing a set of appropriate similarity transformations, which are then solved by the numerical technique Runge-Kutta method of order four (RK-4). The new and advanced trend for the convergence of the obtained results is validated through a neural networking approach. The temperature of hybrid nanofluid is augmented by an increase in the porosity parameter, the unsteadiness factor, the Eckert number, the magnetic field, and the Forchheimmer number, while for the values of the radiation factor, the thermal heat is decreasing near the disk and increasing away from the disk. The precision of the obtained results has been ensured by comparing them with established results, with good agreement among these results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call